Фонд

оценочных средств

по учебной дисциплине

Метрология, стандартизация и сертификация

по специальности СПО

11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств

г. Спасск – Дальний

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности СПО 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств базовой подготовки и рабочей программы учебной дисциплины ОП.03 Метрология, стандартизация и сертификация.

Разработчики:

Организация-разработчик: краевое государственное бюджетное профессиональное образовательное учреждение «Спасский индустриально – экономический колледж»

Разработчик: Тагильцев Е.В., преподаватель

Содержание

1 Паспорт фонда оценочных средств	4
2 Результаты освоения учебной дисциплины, подлежащие проверке	5
3 Оценка освоения учебной дисциплины	6
3.1 Формы и методы оценивания	6
3.2 Контроль и оценка освоения учебной дисциплины по темам (разделам)	7
3.3 Задания для оценки освоения дисциплины	10
4 Контрольно-измерительные материалы для промежуточной аттестации по учебной дисциплине	24
5 Пист согласования	28

1 Паспорт фонда оценочных средств

В результате освоения учебной дисциплины «Метрология, стандартизация и сертификация» обучающийся должен обладать предусмотренными ФГОС по специальности 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств (базовая подготовка) следующими умениями, знаниями, которые формируют профессиональные и общие компетенции:

- уметь:

У1 - руководствоваться требованиями нормативных правовых актов к основным видам продукции (услуг) и процессов.

<u>- знать:</u>

- 31 основные понятия метрологии, стандартизации и сертификации;
- 32 документацию систем стандартов качества;
- 33 основные положения систем (комплексов) общетехнических и организационно-методических стандартов.

- общие компетенции:

- ОК 1 Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2 Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3 Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4 Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5 Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6 Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей.
- ОК 7 Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях.
- ОК 9 Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ОК 10 Пользоваться профессиональной документацией на государственном и иностранном языках.

- профессиональные компетенции:

- ПК 1.2 Выполнять настройку и регулировку электронных приборов и устройств средней сложности с учетом требований технических условий.
- ПК 2.3 Выполнять техническое обслуживание электронных приборов и устройств в соответствии с регламентом и правилами эксплуатации.
- ПК 3.1 Разрабатывать структурные, функциональные и принципиальные схемы простейших электронных приборов и устройств.
- ПК 3.2 Разрабатывать проектно-конструкторскую документацию печатных узлов электронных приборов и устройств и микросборок средней сложности.
- ПК 3.3 Выполнять оценку качества разработки (проектирования) электронных приборов и устройств на основе печатного монтажа

Формой аттестации по учебной дисциплине является дифференцированный зачёт.

2 Результаты освоения дисциплины, подлежащие проверке

В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования профессиональных и общих компетенций:

Таблица 1

Результаты обучения: умения, знания и	Показатели оценки результата	Форма контроля и
общие компетенции		оценивания
Уметь:		
У1 - руководствоваться требованиями нормативных правовых актов к основным видам продукции (услуг) и процессов. ПК 1.2, ПК 2.3, ПК 3.1 – ПК 3.3 ОК 1- ОК7,ОК9,ОК10	- выполнение оценки и расчётов для определения оптимальной конфигурации оборудования и характеристики устройств для конкретных задач; - рациональное распределение времени для решения задач на всех этапах профессиональной деятельности; - активное использование различных источников информации для профессионального и личностного развития	проверка индивидуальных заданий внеаудиторной самостоятельной работы, проверка практических работ, контрольная работа.
Знать:		

24.0	T v	<u> </u>
31 Основные понятия метрологии,	- знание основных понятий	- тестирование по
стандартизации и сертификации	метрологии, стандартизации и	темам, проверка
ОК 1- ОК7,ОК9,ОК10	сертификации, умение их	рефератов,
	применять для решения	конспектов
	профессиональных задач	внеаудиторной
32 Документацию систем стандартов	-знание принципов работы с	самостоятельной
качества	основными документами	работы, практическая
OK 1- OK7,OK9,OK10	стандартов качества, умение их	работа, контрольная
	применять для решения	работа
	профессиональных задач	
33 Основные положения систем	-знание основных положений	
(комплексов) общетехнических и	систем (комплексов)	
организационно-методических	общетехнических и	
стандартов.	организационно-методических	
OK 1- OK7,OK9,OK10	стандартов, умение их применять	
	для решения профессиональных	
	задач	

3 Оценка освоения учебной дисциплины

3.1 Формы и методы оценивания

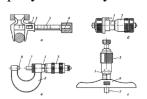
Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств, направленные на формирование общих компетенций.

3.2 Контроль и оценка освоения учебной дисциплины по темам (разделам)

Таблица 2

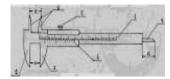
Элемент учебной дисциплины	Формы и методы контроля										
	Текущий контроль		Рубежный	контроль	пь Промежуточная аттестация						
	Форма контроля	Проверяемые ПК, ОК, У, 3	Форма контроля	Проверяе мые ПК, ОК,У,3	Форма контроля	Проверяемые ПК, ОК,У,3					
Раздел 1 Основы метрологии			Контрольная работа по разделу 1 (контрольное тестирование)	У1, 31, 32, ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10	Зачёт	У1, 31, 32, ПК3.1 – ПК 3.3 ОК1-ОК5, ОК9,ОК10					
Тема 1.1 Основные термины и определения метрологии	Самостоятельная работа. Составить сообщения на темы: «Приоритетные направления современной метрологии»	У1, 31, 32, ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10									
Тема 1.2 Основы техники измерений и средства измерений	Практическая работа №1 «Анализ технической документации на средства измерения и определение по ней основных классификационных признаков и нормируемых метрологических характеристик» Практическая работа №2 «Измерение линейных и угловых размеров»	У1, 31, 32 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10									

Тема 1.3 Организационно- правовые основы обеспечения единства измерений	Практическая работа №3 «Анализ Закона РФ «Об обеспечении единства измерений». Решение ситуационных задач» Самостоятельная работа. Составить сообщения на тему: «Организационно-правовые основы обеспечения единства измерений»	У1, 31, 32 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10				
Раздел 2 Основы стандартизации			Контрольная работа по разделу 2	У 1 31, 32 ПКЗ.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10	Зачёт	У 1 31, 32 ПКЗ.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10
Тема 2.1 Методы и формы стандартизации	Самостоятельная работа. Составить сообщения на темы: «Объективные методы определения показателей качества»	У 1 31, 32 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10	•			
Тема 2.2 Стандартизация в РФ	Практическая работа №4 «Анализ стандартов системы стандартизации в Российской Федерации ГОСТ Р 1.0-2004, ГОСТ Р 1.12-2004, ГОСТ Р 1.2-2004, ГОСТ Р 1.4-2004, ГОСТ Р 1.5-2004, ГОСТ Р 1.9-2004, ГОСТ 2.114-95» Практическая работа №5 «Изучение технико-экономического кодирования промышленной продукции»					
Тема 2.3 Международная стандартизация	Практическая работа №6 «Ознакомление и анализ стандарта IPC-2221A. Общий стандарт на разработку печатной платы»	У 1 31, 32 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10				


Тема 2.4 Стандартизация промышленной продукции		У 1 31, 32 ПКЗ.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10				
Раздел 3. Основы сертификации			Контрольное тестирование	У 1 31,32,33 ПК 1.2,ПК 2.3 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10	Зачёт	
Тема 3.1 Системы сертификации		У 1 31,32,33 ПК 1.2,ПК 2.3 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10				
Тема 3.2 Проведение сертификации	Практическая работа №7 «Составление алгоритма сертификации продукции или услуг» Практическая работа №8 «Анализ реального сертификата соответствия»	У 1 31,32,33 ПК 1.2,ПК 2.3 ПК3.1 – ПК 3.3 ОК1-ОК7, ОК9,ОК10				

3.3 Задания для оценки освоения учебной дисциплины

1. Тема 1.2 Практическая работа №1


Вариант 1

- 1 Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем
 - а) калибр;
 - б) измерительный прибор;
 - в) измерительная система;
 - г) мера;
- 2 Физический принцип (явление или совокупность явлений), положенный в основу построения средства измерения данного вида это
 - а) метод измерения;
 - б) принцип действия;
 - в) методика измерения;
 - г) принцип измерения;
- 3 Условие для установления пригодности к применению технического средства
 - a) dmin \leq dд \leq dmax;
 - б) Δ изм \leq σ ;
 - в) Δ изм $> \sigma$;
 - Γ) dmin > d Δ > dmax;
- 4 Показания штангенциркуля снимаются (2 ответа)
 - а) по шкале, расположенной на штанге;
 - б) по шкале, расположенной на нониусе;
 - в) по шкале стебля;
 - г) по шкале барабана;
- 5 Штангенциркули и микрометры относятся к группе
 - а) автоматизированных измерительных систем;
 - б) рычажных приборов;
 - в) оптических измерительных систем;
 - г) механическим универсальным средствам измерения;
- 6 На рисунке под буквой б) показан прибор

- а) штангенциркуль;
- б) микрометрический нутромер;
- в) микрометр гладкий;
- г) микрометрический глубиномер;
- 7 Расстояние между осями рядом расположенных штрихов шкалы это
 - а) диапазон измерений;
 - б) точность измерения;
 - в) цена деления шкалы;
 - г) деление шкалы;
- 8 Длина шпинделя микрометра имеет пределы измерения, мм (2 ответа)
 - a) 0 25;
 - б) 0 125;
 - в) 25 50;
 - Γ) 0 250;
- 9 В основе устройства микрометрических инструментов лежит использование
 - а) микрометрической резьбовой пары;

- б) циферблата со шкалой;
- в) дух измерительных поверхностей (губок), между которыми устанавливается размер;
- г) двух параллельных измерительных поверхностей малой шероховатости;
- 10 На рисунке под цифрой (1) показан элемент штангенциркуля

- а) штанга;
- б) нониус;
- в) верхние измерительные губки;
- г) нижние измерительные губки;
- 11 Отклонение результата измерения от истинного значения измеряемой величины
 - а) метод измерения;
 - б) единство измерения;
 - в) погрешность измерения;
 - г) принцип измерения;
- 12 Средство, применяемое для измерений, не связанных с передачей размера единицы физической величины
 - а) эталоны;
 - б) государственные эталоны;
 - в) рабочие средства измерения;
 - г) государственные средства измерения;
- 13 Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения
 - а) мера;
 - б) эталон;
 - в) измерительный прибор;
 - г) измерительный преобразователь;
- 14 Нониус штангенциркуля имеет разметку с ценой деления, мм (2 ответа)
 - a) 0,1;
 - б) 0,05;
 - в) 0,01;
 - r) 1;
- 15 С помощью нижних губок штангенциркуля определяются размеры детали
 - а) внешние;
 - б) внутренние;
 - в) габаритные;
 - г) присоединительные;
- 16 Показания микрометра снимаются (2 ответа)
 - а) по шкале, расположенной на штанге;
 - б) шкале, расположенной на нониусе;
 - в) по шкале стебля;
 - г) по шкале барабана

Вариант 2

- 1 По характеру зависимости измеряемой величины от времени измерения разделяются на
 - а) технические и лабораторные
 - б) статические и динамические
 - в) прямые и косвенные
 - г) контактные и бесконтактные
- 2 Определение «средство измерений» характерно для изделия
 - а) штанга
 - б) гиря

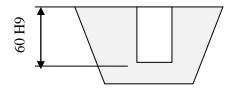
- в) мяч
- г) кубик рубик
- 3 На рисунке показан прибор

- а) штангенинструмент;
- б) микрометрический;
- в) с механическим преобразованием;
- г) мера;
- 4 Плоскопараллельные концевые меры длины предназначены для
 - а) определения отклонения размера;
 - б) измерения параметра изделия;
 - в) сравнения значений эталона и изделия;
 - г) передачи размера от эталона до изделия;
- 5 Основная шкала штангенциркуля имеет разметку с ценой деления, мм
 - a) 0,1;
 - б) 0,05;
 - в) 0,01;
 - r) 1;
- 6 Значение 45 мм в системе единиц измерения СИ м равно, м
 - a) 0,045
 - б) 0,0045
 - в) 4,5
 - Γ) 0,45
- 7 К штриховым измерительным средствам относится (2 ответа)
 - а) штангенциркуль;
 - б) концевая мера длины;
 - в) калибр пробка;
 - г) линейка;
- 8 Элементы индикатора, которые совершают движение в процессе измерения
 - а) стержень;
 - б) шкала;
 - в) стрелка;
 - г) корпус;
- 9 За размер плоскопараллельной меры длины принимается
 - а) толщина;
 - б) высота;
 - в) длина;
 - г) глубина;
- 10 На картинке изображено

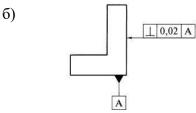
- а) мера;
- б) измерительная система;
- в) калибр пробка;
- г) калибр скоба;
- 11 По числу измерений физических величин измерения подразделяют на...
 - а) прямые и косвенные
 - б) однократные и многократные
 - в) контактные и бесконтактные
 - г) абсолютные, допусковые, относительные
- 12 Измерительные линейки предназначены для измерения методами (2 ответа)
 - а) относительным
 - б) бесконтактным
 - в) контактным
 - г) прямым
- 13 Погрешность измерения 2...4 мкм характерна для измерительного средства

- а) микрометра
- б) штангенциркуля
- в) линейки
- г) калибра
- 14 Предельное значение измеряемой величины, которое может быть получено с установленной точностью без использования дополнительных устройств
 - а) диапазон измерений;
 - б) точность измерения;
 - в) цена деления шкалы;
 - г) деление шкалы;
- 15 Для определения отклонений предельных размеров вала в производстве применяются виды калибров по классификации (2 ответа)
 - а) пробка;
 - б) скоба;
 - в) рабочий;
 - г) предельный;
- 16 Действительным значением величины является значение, которое
 - а) близко к истинному
 - б) получено экспериментальным путём
 - в) может быть использовано вместо истинного значения
 - г) имеет измеряемая величина

2.Тема 1.2 Практическая работа №2


- 1 Средства измерения, производящее измерения без участия человека
 - а) универсальные;
 - б) рычажно-механические;
 - в) автоматические;
 - г) оптические;
- 2 Измерительная система, предназначенная для целей автоматического управления движущимся объектом
 - а) информационная;
 - б) управляющая;
 - в) контролирующая;
 - г) организационная;
- 3 САК это измерительная система
 - а) информационная;
 - б) управляющая;
 - в) контролирующая;
 - г) организационная;
- 4 Системы, только воспринимающие информацию от объекта
 - а) пассивные;
 - б) активные;
 - в) саморегулирующиеся;
 - г) самонастраивающиеся;
- 5 Для обработки измерительной информации в ИИС используются (2 ответа)
 - а) специальные ЭВМ;
 - б) универсальные средства измерения;
 - в) специальные средства измерения;
 - г) универсальные ЭВМ;
- 6 Измерительные системы независимых измерений дискретных значений непрерывных величин это

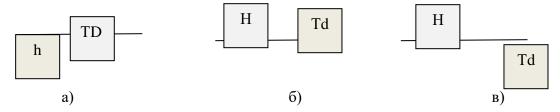
- а) статистические;
- б) раздельного измерения;
- в) реального измерения;
- г) прямого измерения;
- 7 Задачей систем технической диагностики СТД является
 - а) получение измерительной информации;
 - б) обработка измерительнойинформации;
 - в) определение работоспособности технической системы;
 - г) контроль технических систем;
- 8 ИИС это измерительная система
 - а) контролирующая;
 - б) информационная;
 - в) управляющая;
 - г) поставляющая;
- 9 САК использует для воздействия на объект контроля связь
 - а) обратную;
 - б) прямую;
 - в) управляющую;
 - г) самоустанавливающую;
- 10 Входные величины в измерительных системах для прямых измерений воспринимаемаются
 - а) датчиками;
 - б) ЭВМ;
 - в) измерительными приборами;
 - г) преобразователями;


3. Тема 1.3 Практическая работа №3

Вариант 1

- 1 Выполнить анализ размеров чертежа и построить схему поля допуска, нанести на схему предельные отклонения и предельные размеры
 - тип элемента детали
 - номинальный размер
 - верхнее отклонение
 - нижнее отклонение
 - наибольший предельный размер
 - наименьший предельный размер
 - допуск размера

- 2 Определите параметры соединения и технические требования по условному обозначению
- a) D-6 x 28 x32 $\frac{H7}{f7}$ x 7 $\frac{F8}{f7}$


- 3 Для заданного сопряжения деталей \emptyset 25 $\frac{\text{H8}}{\text{s7}}$ определить:
 - систему и тип посадки
 - номинальный размер сопряжения;

- предельные отклонения деталей сопряжения;
- предельные размеры деталей сопряжения;
- допуск размеров деталей сопряжения;

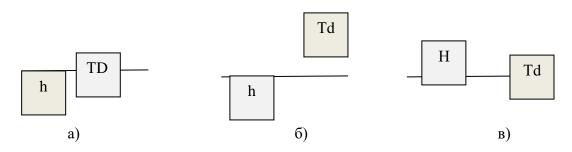
Выполнить расчет посадки.


4 Выбрать номер правильного ответа:

Посадка в системе отверстия, с зазором

Вариант 2

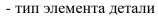
- 1 Выполнить анализ размеров чертежа и построить схему поля допуска, нанести на схему предельные отклонения и предельные размеры
 - тип элемента детали
 - номинальный размер
 - верхнее отклонение
 - нижнее отклонение
 - наибольший предельный размер
 - наименьший предельный размер
 - допуск размера

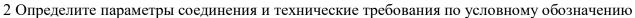


- 2 Определите параметры соединения и технические требования по условному обозначению а) $20\frac{H9}{h9}\frac{D10}{h9}$ $x12\frac{H11}{h11}$ x 18 ГОСТ 23360 78
- б)
- 3 Для заданного сопряжения деталей \varnothing 100 $\frac{D9}{h10}$ определить:
 - систему и тип посадки
 - номинальный размер сопряжения;
 - предельные отклонения деталей сопряжения;
 - предельные размеры деталей сопряжения;
 - допуск размеров деталей сопряжения;

Выполнить расчет посадки.

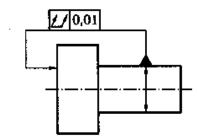
4 Выбрать номер правильного ответа:


Посадка в системе вала, переходная


4. Тема 2.3 Практическая работа №4

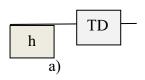
Вариант 1

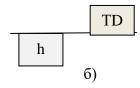
1 Выполнить анализ размеров чертежа и построить схему поля допуска, нанести на схему предельные отклонения и предельные размеры

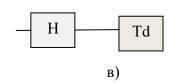


- номинальный размер
- верхнее отклонение
- нижнее отклонение
- наибольший предельный размер
- наименьший предельный размер
- допуск размера

a) M10
$$x1 - \frac{5H6H}{5g6g} - 30$$


3 Для заданного сопряжения деталей \varnothing 45 $\frac{R7}{h6}$ $\,$ определить:

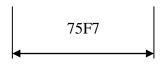

- систему и тип посадки
- номинальный размер сопряжения;
- предельные отклонения деталей сопряжения;
- предельные размеры деталей сопряжения;
- допуск размеров деталей сопряжения;


Выполнить расчет посадки.

4 Выбрать номер правильного ответа:

Посадка в системе вала, с зазором




Вариант 2

1 Выполнить анализ размеров чертежа и построить схему поля допуска, нанести на схему предельные отклонения и предельные размеры

- тип элемента детали
- номинальный размер
- верхнее отклонение

- нижнее отклонение
- наибольший предельный размер
- наименьший предельный размер
- допуск размера

- 2 Определите параметры соединения и технические требования по условному обозначению
- a) $d 8 \times 36 = 8 \times 40 \times 11 \times 7 = f8$
- б)

- 3 Для заданного сопряжения деталей \varnothing 30 $\frac{P6}{h7}$ определить:
 - систему и тип посадки
 - номинальный размер сопряжения;
 - предельные отклонения деталей сопряжения;
 - предельные размеры деталей сопряжения;
 - допуск размеров деталей сопряжения;

Выполнить расчет посадки.

4 Выбрать номер правильного ответа:

Укажите, какой из параметров, характеризующих шероховатость поверхности, является относительной опорной длиной профиля

- a) S;
- б) t_p;
- в) Sm;

5. Контрольная работа по разделам 1 и 2

I Вариант

- 1 Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем
 - а) калибр;

в) измерительная система

б) измерительный прибор;

- г) мера
- 2 Совокупность приёмов использования принципов и средств измерений, выбранная для решения конкретной измерительной задачи называется...
 - а) средством измерения

- в) методом измерения
- б) погрешностью измерения
- г) точностью измерения
- 3 Измерения, при которых искомое значение физической величины находят непосредственно из опытных данных, называются ...?
 - а) косвенными

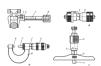
в) статическими

б) динамическими

- г) прямыми
- 4 Единица физической величины это ...
 - а) значение величины равное 0
- б) физическая величина фиксированного размера, условно принятая для сравнения с ней однородной величин, которой присваивается числовое значение, равное 1
 - в) значение физической величины, которое может принимать любое значение
 - г) значение физической величины, указанное в ГОСТе

5 На рисунке под буквой б) показан прибор а) микрометрический нутромер; б) штангенциркуль; в) микрометр гладкий; г) микрометрический глубиномер; 6 Физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин системы, называется... в) основной а) производной б) специальной г) дополнительной 7 Значение, идеальным образом отражающее качественное и количественное свойство объекта -8 По способу получения результата измерения подразделяют на... а) прямые и косвенные в) контактные и бесконтактные б) технические и лабораторные г) абсолютные, допусковые, относительные 9 Измерения физических величин по отношению к одноименной величине, принимаемой за исходную, называются? а) абсолютными в) статическими б) относительными г) лабораторными 10 Расстояние между осями рядом расположенных штрихов шкалы – это а) диапазон измерений; в) цена деления шкалы б) точность измерения; г) деление шкалы 11 Длина шпинделя микрометра имеет пределы измерения, мм – a) 0 - 2500; B) 25 - 506) 0 - 125; Γ) 0 – 250 12 Плоскопараллельные металлические пластины с постоянным значением размера между двумя взаимно параллельными измерительными плоскостями – это а) концевая мера длины в) измерительная установка б) концевая мера угла г) измерительный прибор 13 Одно из свойств, в качественном отношении общее для многих физических объектов, а в количественном – индивидуальное для каждого из них, называется... а) единицей измерения в) показателем качества б) единством измерений г) физической величиной 14 Слово "метрология" в переводе с греческого означает учение...... 15 Отклонение результата измерения от истинного значения измеряемой величины – а) метод измерения; в) погрешность измерения б) единство измерения; г) принцип измерения 16 По характеру зависимости измеряемой величины от времени измерения разделяются на в) прямые и косвенные а) технические и лабораторные б) статические и динамические г) контактные и бесконтактные 17 На рисунке под цифрой (5) показан элемент штангенциркуля а) штанга; в) верхние измерительные губки; б) нониус; г) нижние измерительные губки

18 Определение «средство измерений» не характеризует следующий признак


- а) имеет нормированные метрологические характеристики в) это техническое средство
- б) имеет высокий уровень качества г) воспроизводит или хранит единицу величины
- 19 Значение 45 мм в системе единиц измерения СИ м равно, м
 - a) 0,45
- B) 4,5
- б) 0,0045
- г) 0,045

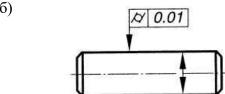
- 20 Количественная характеристика размера конкретного свойства материального объекта, измеряемая физическими единицами измерений это...?
 - а) шкала порядка б) единица измерения в) числовое значение физической величины

II Вариант

1 Метод измерения, при которог	м число измерений равно числу измеряемых величин называют
а) однократные	в) совместными
б) многократными	г) косвенными
2 Измерение – это процесс	
, 11	в) технический
б) экономический;	г) технологический
3 Действительным значением ве	еличины является значение, которое
а) близко к истинному	
б) получено эксперимент	
	ано вместо истинного значения
г) имеет измеряемая вели	
	значенное для выработки сигнала измерительной информации в
	альнейшего преобразования, обработки и хранения –
а) мера;	в) измерительный прибор
б) эталон;	г) измерительный преобразователь
_	ометра имеет разметку с ценой деления, мм –
a) 0,1;	в) 0,01;
6) 0,05;	r) 1;
	и производных единиц физических величин, образованная в
=	заданной системы физических величин, называется системой
а) стандартизации	в) классификации
	печения единства измерений г) единиц физических величин
	ой системе единиц измерения единица длины
опытных данн	при которых искомое значение определяется непосредственно из
	освенное
, <u>.</u>	носительное
	носительное ние или совокупность явлений), положенный в основу построения
средства измерения данного вид	
а) метод измерения;	в) методика измерения
б) принцип действия;	г) принцип измерения
, -	выполненных с помощью технического средства, сопоставляя
измеряемую величину с единице	
а) метрология	
б) измерение	
в) поверка	
г) калибровка	
11 Занимается созданием сист	гемы единиц измерений, разработкой новых методов измерений
исследованиями	
а) теоретическая метроло	огия в) законодательная метрология
б) прикладная метрологи	я г) методологическая метрология
12 На рисунке изображен измер	ительный инструмент
	тангенглубиномер
б) штангенциркуль г) ш	
13 Секунда в системе СИ являет	ся Единицей
а) дополнительной	в) дольной
б) производной	г) основной

- 14 Значение измеряемой величины, соответствующее одному делению шкалы это
- 15 Истинным значением величины является значение, которое ..
 - а) идеальным образом отражает качественное и количественное свойство объекта
 - б) получено экспериментальным путём
 - в) может быть использовано вместо действительного значения
 - г) имеет измеряемая величина
- 16 Целые значения измеряемой величины по показанию штангенциркуля снимаются
 - а) по шкале, расположенной на штанге;
 - б) по шкале, расположенной на нониусе;
 - в) по шкале стебля;
 - г) по шкале барабана;
- 17 Приставке микро соответствует множитель
 - a) 10⁻⁶ б) 10⁻³
- в) 10⁻⁶
- Γ) 10³
- 18 На рисунке под буквой в) показан прибор

- а) штангенциркуль;
 - б) микрометрический нутромер; в) микрометр гладкий;


 - г) микрометрический глубиномер;
- 19 Совокупность функционально и конструктивно объединённых средств измерений и других устройств в одном месте для рационального решения задачи измерений или контроля называют...
 - а) измерительной установкой
- в) информационной-измерительной системой
- б) измерительным прибором
- г) информационно-вычислительным комплексом
- 20 Отклонение результата измерения от условно-истинного значения физической величины, определяемого экспериментально
 - а) эталон
 - б) погрешность
 - в) проверка
 - г) поверка


6. Тема 3.2 Практическая работа №5

Вариант 1

- 1 Выполнить анализ размеров чертежа и построить схему поля допуска, нанести на схему предельные отклонения и предельные размеры
 - тип элемента детали
 - номинальный размер
 - верхнее отклонение
 - нижнее отклонение
 - наибольший предельный размер
 - наименьший предельный размер
 - допуск размера
- 2 Определите параметры соединения и технические требования по условному обозначению

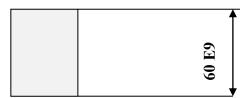
a)
$$50 \frac{P9}{h9} \frac{P9}{h9} \times 28 \frac{H11}{h11} \times 45 \text{ FOCT } 23360 - 78$$

3 Для заданного сопряжения деталей \varnothing 10 $\frac{H9}{u8}$ определить

- систему и тип посадки
- номинальный размер сопряжения;
- предельные отклонения деталей сопряжения;
- предельные размеры деталей сопряжения;
- допуск размеров деталей сопряжения;

Выполнить расчет посадки.

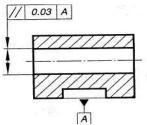
4 Выбрать номер правильного ответа:


Укажите, какой из параметров, характеризующий шероховатость поверхности, является средним шагом неровностей по вершинам

- a) Rz;
- б) t_p;
- в) Sm;

Вариант 2

1 Выполнить анализ размеров чертежа и построить схему поля допуска, нанести на схему предельные отклонения и предельные размеры


- тип элемента детали
- номинальный размер
- верхнее отклонение
- нижнее отклонение
- наибольший предельный размер
- наименьший предельный размер
- допуск размера

2 Определите параметры соединения и технические требования по условному обозначению

a)
$$M27 \times 3 - 7g6g - 50$$

б)

3 Для заданного сопряжения деталей \varnothing 28 $\frac{H6}{n7}$ определить:

- систему и тип посадки
- номинальный размер сопряжения;
- предельные отклонения деталей сопряжения;
- предельные размеры деталей сопряжения;
- допуск размеров деталей сопряжения;

Выполнить расчет посадки.

4 Выбрать номер правильного ответа:

Укажите, по какой системе назначается посадка шпоночного соединения по размеру b

- а) по системе вала
- б) по системе отверстия
- в) безсистемно
- г) по заданным условия

7. Тема 3.2 Практическая работа №6

ВАРИАНТ 1

1 Деятельность, направленная на достижение оптимальной степени упорядочения в определённой области посредством установления положений для всеобщего и многократного применения в отношении реально существующих или потенциальных задач.

С	Т	Α	Н	П	Α	Р	Т	И	3	Α	П	И	Я
	1	1 L	11		1 L	1	1	11	•	1 L		11	/1

2 Стандартизация, устанавливающая показатели, которые отражают свойства существующей и освоенной в производстве продукции - это стандартизация по уровню

Д О С Т И	Г Н У	Т О М У
-----------	-------	---------

3 Повышение качества продукции в соответствии с развитием науки и техники, с потребностями населения и народного хозяйства – это стандартизации

4 Последовательное, научно обоснованное классифицирование объектов стандартизации

C	И	С	T	Е	M	A	T	И	3	A	Ц	И	Я
---	---	---	---	---	---	---	---	---	---	---	---	---	---

5 Наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности

6 Стандартизация, при которой для оптимального решения конкретной проблемы осуществляется установление и применение взаимосвязанных требований как к самому объекту стандартизации в целом, так и к его основным элементам.

К	O	M	П	Л	Е	К	С	Н	A	Я
---	---	---	---	---	---	---	---	---	---	---

7 Стандартизация, осуществляемая в отдельных отраслях промышленности с целью обеспечения единства технических требований и норм к продукции отрасли

О	T	P	A	С	Л	Е	В	Α	Я

8 Отбор целесообразных для дальнейшего производства и применения объектов стандартизации

C	Е	Л	Е	К	Ц	И	Я

9 Зависит от того, участники какого географического, экономического, политического региона мира принимают стандарт – это стандартизации

УР	О	В	Е	Н	Ь
----	---	---	---	---	---

10 Метод создания новых машин, приборов и другого оборудования путем компоновки конечного изделия из ограниченного набора стандартных и унифицированных узлов и агрегатов

A	Γ	P	Е	Γ	A	T	И	P	Ο	В	Α	Н	И	Е
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

ВАРИАНТ 2

1 Продукция,	производство,	процесс ил	и услуга,	для	которых	разрабатывают	требования,
характеристики, пара	аметры, правила	а и т.п. – это	ст	анда	ртизации		

|--|

2 Стандартизация, заключающаяся в установлении повышенных по отношению к уже достигнутому на практике уровню норм

О	П	Е	P	Е	Ж	Φ	Ю	Щ	A	Я

3 Совокупность взаимосвязанных объектов стандартизации

ОБ	Л	A	С	T	Ь
----	---	---	---	---	---

4 Метод стандартизации, заключающийся в рациональном уменьшении числа типов, видов и размеров объектов одинакового функционального назначения — это

У	Н	И	Φ	И	К	Α	Ц	И	Я

5 Стандартизация, участие в которой открыто для соответствующих органов любой страны — это стандартизация

M	Е	Ж	Д	У	Н	A	P	О	Д	Н	A	Я

6 Метод стандартизации, заключающаяся в разработке и установлении типовых решений (конструктивных, технологических, организационных и т. п.) на основе наиболее прогрессивных методов и режимов работы

T	И	П	И	3	A	Ц	И	Я

7 Стандартизация в одном конкретном государстве - это стандартизация

Н	A	Ц	И	О	Н	A	Л	Ь	Н	A	Я	
---	---	---	---	---	---	---	---	---	---	---	---	--

8 Метод создания новых машин, приборов и другого оборудования путем компоновки конечного изделия из ограниченного набора стандартных и унифицированных узлов и агрегатов

A	Γ	P	Е	Γ	A	T	И	P	О	В	A	Н	И	Е
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

9 Стандартизация, проводимая на предприятиях (в объединениях) и устанавливающая требования, нормы и правила, применяемые только на данном предприятии

3.5	_	~	_	**		~
M	E	C	T	Н	Α	Я

10 Форма стандартизации, заключающаяся в простом сокращении числа применяемых при разработке изделия или при его производстве марок полуфабрикатов, комплектующих изделий и т.п. до количества, технически и экономически целесообразного, достаточного для выпуска изделий

$oxed{C}$ $oxed{W}$ $oxed{M}$ $oxed{\Pi}$ $oxed{\Pi}$ $oxed{M}$ $oxed{M}$ $oxed{\Pi}$ $oxed{M}$ $oxed{M}$ $oxed{M}$ $oxed{M}$ $oxed{M}$ $oxed{M}$ $oxed{M}$			К А Ц		Φ	И	Л	Π	M	И	C
---	--	--	-------	--	---	---	---	---	---	---	---

4 Контрольно-измерительные материалы для промежуточной аттестации по учебной дисциплине

Предметом оценки являются умения и знания. Контроль и оценка осуществляются с использованием следующих форм и методов: тестирования, выполнения индивидуальных заданий, экзамена

4.1 Вопросы на дифференцированный зачёт

- 1 Основные понятия и определения в области метрологии: физическая величина, измерение, погрешность измерения, точность измерений, единство измерений.
- 2 Основные виды деятельности в области метрологии: измерение, технический контроль, испытание, техническая диагностика.
- 3 Объекты измерения: физические величины основные и производные, их единицы измерения. Качественная и количественная характеристика физической величины.
- 4 Понятие системы единиц измерения физических величин. Системы единиц измерения: абсолютная, метрическая, СГС, СИ.
- 5 Основные и производные единицы физических величин, кратные и дольные единицы физических величин.
- 6 Международная система единиц измерения физических единиц. Основные и производные величины системы СИ, их обозначение.
- 7 Внесистемные единицы физических величин, допускаемые к применению без ограничения срока наравне с единицами SI: массы, времени, длины и другие.
- 8 Системы воспроизведения единиц, хранения и передачи физических величин. Виды эталонов.
- 9 Схема передачи размеров от эталона средствам измерения. Поверочные схемы
- 10 Обеспечение единства измерений в Российской Федерации
- 11 Основы теории измерений. Измерительная информация, погрешность измерения, точность измерения. Виды погрешностей измерения
- 12 Виды измерений: прямые и косвенные, абсолютные и относительные, статистические, статические и динамические, совместные и совокупные, равноточные и неравноточные, однократные и многократные, контактные и бесконтактные, метрологические и технические.
- 13 Результат и погрешность измерения. Истинное и действительное значения физических величин. Приведенная, случайная и систематическая погрешности измерения
- 14 Технические средства измерения. Классификация средств измерения и контроля по определяющим признакам: по степени универсальности, по связи с объектом измерения.
- 15 Классификация средств измерения по РМГ -29-99 Метролгия. Основные термины и определения»: меры, калибры, универсальные измерительные средства, измерительные приборы и измерительные системы.

- 16 Классы точности и метрологические характеристики средств измерения и контроля: цена деления, диапазон показаний, диапазон измерений, погрешность измерения, точность измерения. Предел допустимой погрешности измерений
- 17 Методика выбора средств измерений для контроля изделий с заданной точностью.
- 18 Плоскопараллельные меры длины (ПКМД), их назначение. Наборы ПКМД и правила составления блока мер требуемого размера.
- 19 Назначение и классификация гладких калибров, щупов. Калибры для контроля валов и отверстий, предельные калибры
- 20 Классификация штангенинструментов. Устройство штангенциркуля, штангенглубиномера, штангенрейсмуса. Правила измерения и чтения размеров штангенинструментами.
- 21 Микрометрические инструменты: микрометр, микрометрический глубиномер, микрометрический нутромер. Правила измерения и чтения размеров микрометрическими инструментами.
- 22 Классификация рычажно-механических и оптико-механических приборов, их устройство и область применения.
- 23 Средства механизации и автоматизации измерений и контроля.
- 24 Государственная система стандартизации Российской Федерации. Законодательная база стандартизации
- 24 Нормативные документы по стандартизации: стандарт, технические условия, регламент, свод правил.
- 25 Категории и виды стандартов. Порядок разработки и утверждения стандартов.
- 26 Органы и службы по стандартизации Российской Федерации, её задачи.
- 27 Взаимозаменяемость, её виды: полная и неполная (частичная), внутренняя и внешняя, функциональная и геометрическая. Назначение и принципы взаимозаменяемости
- 28 Параметрическая стандартизация. Ряды предпочтительных чисел, их назначение при проектировании и изготовлении изделий.
- 29 Параметрические ряды, методы их построения и назначение
- 30 Основные понятия допусков и посадок. Что такое сопрягаемые и несопрягаемые поверхности и размеры, охватываемые и охватывающие поверхности, валы и отверстия.
- 31 Характеристики отдельного размера: номинальный, действительный и предельные размеры.
- 32 Что такое отклонение и допуск размера. Как указываются отклонения на чертежах?
- 33 Графическое изображение размеров и отклонений. Понятия нулевой линии и поля допуска.
 Методика построения графического изображения поля допуска
- 34 Обозначение размеров и отклонений на чертежах. Приведите примеры обозначения размеров
- 35 Подвижные и неподвижные соединения деталей в машинах и механизмах. Что такое посадка, зазор и натяг.

- 36 Виды посадок и область применения.
- 37 Параметры, характеризующие посадки с зазором, с натягом и переходные. Чему равен допуск посадки? Взаимное расположение полей допусков сопрягаемых деталей при различных посадках.
- 38 Точность размеров. Что квалитет точности, как он обозначается и что характеризует?.
- 39 Для чего предназначены системы допусков и посадок? Системы допусков и посадок гладких цилиндрических соединений: система вала и система отверстия.
- 40 Основные отклонения и квалитеты точности. Образование полей допуска.
- 41 Системы образования посадок: система вала и система отверстия. Обозначение полей допусков основных деталей системы: основного вала и основного отверстия. Внесистемные посадки.
- 42 Единая система допусков и посадок (ЕСДП), её структура и принципы построения. В чем отличие системы ЕСДП от системы ОСТ?
- 43 Обозначение полей допусков и посадок в ЕСДП. Интервалы размеров. Что такое единица допуска и как она определяется?
- 44 Назначение и виды подшипников качения. Присоединительные размеры подшипников качения.
- 45 Какие классы точности установлены для подшипников качения, их обозначение. Какими свойствами взаимозаменяемости обладают подшипники качения?
- 46 Посадки наружного и внутреннего колец подшипников качения. Как располагаются поля допусков на наружные и внутренние размеры подшипников качения?
- 47 Виды посадок подшипников качения. Как обозначаются поля допусков и посадки подшипников качения и сопрягаемых поверхностей на чертежах?
- 48 Виды нагружения колец подшипников качения: местное, циркуляционное и колебательное. В каких случаях возникают различные нагружения колец?
- 49 Взаимозаменяемость деталей по форме и взаимному расположению поверхности. Основные понятия и определения: реальная и номинальная поверхности, база, профиль поверхности, прилегающие поверхности и прилегающая прямая.
- 50 Условные обозначения и единицы измерения отклонений формы и расположения поверхностей, допуска формы или допуска расположения, длины нормируемого участка.

4.2 Литература

Основные источники:

- 1. Качурина Т.А. Метрология и стандартизация: учебник М.: Академия, 2015
- 2. Латышенко, К. П. Метрология и измерительная техника. Лабораторный практикум : учебное пособие для СПО / К. П. Латышенко, С. А. Гарелина. 2-е изд., испр. и доп. М. : Издательство Юрайт, 2017. 214 с.
- 3. Метрология. Теория измерений : учебник и практикум для СПО / В. А. Мещеряков, Е. А. Бадеева, Е. В. Шалобаев ; под общ. ред. Т. И. Мурашкиной. 2-е изд., испр. и доп. М. : Издательство Юрайт, 2017. 155 с.

Дополнительные:

- 4. Кошевая И.П. Метрология, стандартизация и сертификация. /И.П.Кошевая, А.А.Канке М: ИД «Форум»: ИНФРА –М, 2007 416 с
- 5. Борисов Ю.И. Метрология, стандартизация и сертификация. /Ю.И.Борисов, А.С.Ситов, В.И.Нефедов, В.К.Биттиков, Ю.Л.Белик, В.С.Верба М: «Форум»: ИНФРА –М, 2007 336 с
 - 6. В.Н.Фомин. Квалиметрия. Управление качеством, сертификация. М: Ось, 1989 210с
- 7. Крылова Г.Д. Основы стандартизации, сертификации, метрологии М: ЮНИТИ-ДАНА, 2002- 711 с.

Интернет источники:

5. https://studref.com

5 Лист согласования

Дополнения и изменения к ФОС на учебный год

Дополнения и изменения к ФОС на	учебный год по дисциплине
В ФОС внесены следующие изменения:	
Дополнения и изменения в ФОС обсуждены на заседа	нии МЦК
« » 20 г. (протокол №).	
Председатель ЦК /"	/