Фонд

оценочных средств

по учебной дисциплине

Микропроцессорные системы

по специальности СПО

11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств

г. Спасск – Дальний 2018 г.

Фонд оценочных средств по дисциплине ОП.08 Микропроцессорные системы разработан

на основе Федерального государственного образовательного стандарта среднего

профессионального образования по специальностям СПО:

11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и

устройств базового уровня подготовки и программы учебной дисциплины

Микропроцессорные системы

Разработчики:

Организация-разработчик: краевое государственное бюджетное профессиональное

образовательное учреждение «Спасский индустриально-экономический колледж»

Разработчик: Поминов Павел Владимирович, преподаватель КГБ ПОУ СИЭК

2

СОДЕРЖАНИЕ

Паспорт фонда оценочных средств	4
Результаты освоения учебной дисциплины, подлежащие проверке	4
Оценка освоения учебной дисциплины	5
3.1 Формы и методы оценивания	5
3.2 Перечень вопросов и заданий для текущего контроля знаний по дисцип.	<u>лине</u> 6
3.3 Вопросы кэкзамену по дисциплине	14

1 Паспорт фонда оценочных средств

В результате освоения учебной дисциплины ОП.08 Микропроцессорные системы обучающийся должен обладать предусмотренными ФГОС по специальности СПО 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств базового уровня подготовки следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:

Код	Умения	Знания	
пк, ок			
ОК 01-03,	- читать электрические	- типовые узлы и устройства	
07, 09,10	схемы, построенные на	микропроцессорных систем,	
	микросхемах	- классификация устройств памяти;	
ПК 1.1,	микроконтроллеров;	- архитектура микропроцессоров и	
1.2, 2.1-	- программировать	микроконтроллеров;	
2.3, 3.1, 3.2	встраиваемые системы:	- способы алгоритмизации и	
	AVR-микроконтроллеры	программирования микроконтроллеров;	
	с помощью	- принципы взаимодействия аппаратного и	
	специализированных	программного обеспечения в работе	
	языков;	микроконтроллеров.	
	- проводить программно-		
	аппаратную отладку		
	встраиваемых систем		
	(микропроцессорных		
	систем).		

Формой аттестации по учебной дисциплине является экзамен

2 Результаты освоения учебной дисциплины, подлежащие проверке

2.1 В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

Таблица 1

Результаты обучения	Критерии оценки	Методы оценки
Знания:		
- типовых узлов и	- правильность и четкость ответов	Тестовый контроль по

устройств	на поставленные вопросы;	тематике дисциплины
микропроцессорных	- глубина понимания типовых	
систем,	узлов и устройств	Оценка результатов
-классификации	микропроцессорных систем;	внеаудиторной
устройств памяти;	-правильность представления об	самостоятельной работы
-архитектуры	архитектурах микропроцессоров и	_
микропроцессоров и	микроконтроллеров;	Экспертное наблюдение и
микроконтроллеров;	- глубина понимания способов	оценка результатов
-способов	алгоритмизации и программирования	деятельности студентов
алгоритмизации и	микроконтроллеров и принципов	при выполнении и защите
программирования	взаимодействия программного	лабораторных работ
микроконтроллеров;	обеспечения в работе	
-принципов	микроконтроллеров;	Экзамен
взаимодействия		
аппаратного и		
программного		
обеспечения в работе		
микроконтроллеров		
Умения:		
- читать электрические	- оптимальность составления	Экспертное наблюдение и
схемы, построенные на	программы для организации	оценка результатов
микросхемах	взаимодействия с памятью и с	деятельности студентов
микроконтроллеров;	внешними устройствами;	при выполнении и защите
- программировать	- точность и скорость чтения	лабораторных работ,
встраиваемые системы:	электрических схем, построенных на	выполнении
AVR- микроконтроллеры	микросхемах микроконтроллеров;	индивидуальных заданий
с помощью	- глубина владения методами и	
специализированных	средствами программирования	Экзамен
языков;	микроконтроллеров;	
- проводить программно-	- точность выполнения программно-	
аппаратную отладку	аппаратной отладки встраиваемых	
встраиваемых систем	систем (микропроцессорных	
(микропроцессорных	систем)	
систем)		

3 Оценка освоения учебной дисциплины:

3.1 Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине ОП.08 Микропроцессорные системы, направленные на формирование общих и профессиональных компетенций.

3.2 Перечень вопросов и заданий для текущего контроля знаний по дисциплине OП.08 Микропроцессорные системы

Раздел 1 Микропроцессоры и микропроцессорные системы

Тема 1.1 Микропроцессорные системы (МПС) и микропроцессоры (МП)

Контрольные вопросы

Дать определение микропроцессора.

Дать определение микропроцессорной системы.

Пояснить сущность принципов Джона фон Неймана.

Тема 1.2 Организация функционирования МПС и МП

Контрольные вопросы

Привести обобщенную структуру МП.

Пояснить принципы взаимодействия составных частей МП.

Тема 1.3 Микропроцессоры (МП)

Контрольные вопросы

Пояснить назначение и принцип действия системы управления МП.

Привести классификацию систем управления микропроцессоров.

Тема 1.4 Системная шина

Контрольные вопросы

Дать определение системной шины

Привести состав системной шины.

Тема 1.5 Система прерываний МП

Контрольные вопросы

Дать определение прерываний.

Привести классификацию прерываний.

Тема 1.6 Программы-отладчики

Контрольные вопросы

Указать назначение программ-отладчиков

Привести классификацию программ-отладчиков

Тема 1.7 Устройства памяти ЭВМ и система адресации

Контрольные вопросы

Дать понятие о структуре адресного пространства ЭВМ.

Пояснить сущность прямой и косвенной адресации.

Раздел 2 Микроконтроллеры (МК)

Тема 2.1 основные сведения о микроконтроллерах

Контрольные вопросы

Привести определение микроконтроллера.

Привести общую классификацию микроконтроллеров.

Указать различия в структуре и параметрах микроконтроллеров различных семейств.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по поиску информации о семействах микроконтроллеров, их особенностях и основных характеристиках

Тема 2.2 Распределение памяти микроконтроллеров

Контрольные вопросы

Указать отличительные особенности структуры памяти микроконтроллеров.

Указать классификацию микроконтроллеров по устройствам памяти.

Тема 2.3 Периферийные устройства микроконтроллеров

Контрольные вопросы

Указать примерный состав периферийных устройств микроконтроллеров.

Пояснить принципы управления периферийными устройствами микроконтроллеров.

Тема 2.4 Интерфейсы

Контрольные вопросы

Указать типы интерфейсов, используемых в микроконтроллерах.

Указать назначение и принципы действия интерфейсов различного типа.

Раздел 3 Алгоритмизация и программирование

Тема 3.1 Языки программирования

Контрольные вопросы

Привести классификацию языков программирования.

Указать области применения языков программирования различного уровня.

Тема 3.2 Язык Ассемблера

Контрольные вопросы

Указать основные достоинства и недостатки языка Ассемблера.

Пояснить структуру программы на языке Ассемблера.

Задания для самостоятельной работы обучающихся

Индивидуальная подготовка к выполнению лабораторных работ.

Тема 3.3 Язык программирования C++

Контрольные вопросы

Указать основные особенности языка программирования С++.

Дать определение среды программирования для микроконтроллеров.

Пояснить принцип действия и основные особенности среды программирования AVR Studio 4.0.

Задания для самостоятельной работы обучающихся

Индивидуальная подготовка к выполнению лабораторных работ.

Контрольная работа

Выбрать номер правильного ответа

1. Сегмент - это:

- а) Блок оперативной памяти фиксированного размера 4 Кб.
- б) Независимый, поддерживаемый на аппаратном уровне, блок оперативной памяти.
- в) Блок оперативной памяти, расположенный программой по определенному адресу.
- г) Все перечисленные.

2. Микроконтроллер - это:

- а) Программируемая СБИС, предназначенная для обработки данных в цифровой форме.
- б) Программируемая СБИС, предназначенная для цифровой обработки сигналов.
- в) Программируемая СБИС, предназначенная для производства операций с числами с плавающей запятой.
- г) Программируемая СБИС, предназначенная для реализации алгоритмов управления различными устройствами и процессами.

3. Страница - это:

- а) Блок оперативной памяти фиксированного размера 4 Кб.
- б) Блок оперативной памяти, расположенный программой по определенному адресу.
- в) Независимый, поддерживаемый на аппаратном уровне, блок оперативной памяти.
- г) Все перечисленные.

4. РІС - микроконтроллер - это:

- а) Программируемая СБИС, предназначенная для обработки данных в цифровой форме.
- б) Программируемая СБИС, предназначенная для производства операций с числами с плавающей запятой.
- в) Программируемая СБИС, предназначенная для реализации алгоритмов управления периферийными устройствами ПК.
- г) Программируемая СБИС, предназначенная для реализации алгоритмов управления различными устройствами и процессами.

5. Иерархия процедур при работе МП:

- а) Машинный цикл Машинный такт Командный цикл.
- б) Командный цикл Машинный такт Машинный цикл.
- в) Машинный такт Командный цикл Машинный цикл.
- г) Командный цикл Машинный цикл Машинный такт.

6. Первый микропроцессор назывался:

- a) Intel 4040.
- б) Intel 8080.
- в) Intel 4004.
- г) Intel 8086.

7. В настоящее время развиваются ЭВМ:

- а) Второго поколения.
- б) Третьего поколения.
- в) Четвертого поколения
- г) Пятого поколения

8. Архитектура ЭВМ Фон Неймана характеризуется тем, что:

- а) Команды программы хранятся в ОЗУ, данные в ПЗУ.
- б) Команды программы и данные хранятся вместе.
- в) Команды программы хранятся в ПЗУ, данные в ОЗУ
- г) Команды программы и данные вводятся с внешних устройств

9. Регистр это:

- а) Специализированная дополнительная ячейка памяти
- б) Специализированная дополнительная страница памяти
- в) Специализированная дополнительная микросхема памяти
- г) Специализированный дополнительный комплект микросхем памяти

10. Арифметико-логическое устройство выполняет:

- а) Операции сложения чисел;
- б) Операции сложения логических функций;
- в) Операции сложения чисел и логических функций;
- г) Операции математические и логические.

11. Аккумулятор в АЛУ это:

- а) Специализированный регистр для хранения программы
- б) Устройство для хранения заряда
- в) Специализированный регистр для хранения результата обработки данных
- г) Устройство для питания микропроцессора

12. Шина данных это:

- а) Двунаправленная линия для передачи команд и данных;
- б) Однонаправленная линия для передачи данных;
- в) Двунаправленная линия для передачи команд;
- г) Двунаправленная линия для передачи адресов данных.

13. Шина адреса это:

- а) Однонаправленная или двунаправленная линия для передачи команд
- б) Двунаправленная линия для передачи адресов данных
- в) Однонаправленная или двунаправленная линия для передачи адресов данных
- г) Двунаправленная линия для передачи команд

14. Шина управления это:

- а) Однонаправленная или двунаправленная линия для передачи команд
- б) Однонаправленная или двунаправленная линия для передачи инструкций
- в) Однонаправленная линия для передачи команд
- г) Однонаправленная линия для передачи данных

15. Ассемблер это:

- а) Низкоуровневый язык программирования, команды которого представляют собой набор двоичных чисел
- б) Специальная программа, которая преобразует исходные тексты программы в исполняемый файл
- в) Низкоуровневый язык программирования с мнемоническим представлением команд
- г) Язык программирования, максимально приближенный к человеческому языку

16. Язык ассемблера это:

- а) Низкоуровневый язык программирования, команды которого представляют собой набор двоичных чисел
- б) Специальная программа, которая преобразует исходные тексты программы в исполняемый файл
- в) Низкоуровневый язык программирования с мнемоническим представлением команд
- г) Язык программирования, максимально приближенный к человеческому языку

17. Система команд микропроцессора включает в себя:

- а) Команды пересылки данных, арифметические команды, логические команды, команды переходов
- б) Команды загрузки данных, команды сохранения в памяти, копирование содержимого, запись в устройства ввода-вывода
- в) Команды операций с фиксированной запятой, команды операций с плавающей запятой, команды очистки, команды инкремента и декремента, команды сравнения
- г) Команды сложения по модулю 2, проверка битов и операндов, очистка битов реестра состояния, команды сдвигов

18. Команды пересылки данных это:

а) Команды пересылки данных, арифметические команды, логические команды, команды

переходов

- б) Команды загрузки данных, команды сохранения в памяти, копирование содержимого, запись в устройства ввода-вывода;
- в) Команды сложения по модулю 2, проверка битов и операндов, очистка битов реестра состояния, команды сдвигов
- г) Команды операций с фиксированной запятой, команды операций с плавающей запятой, команды очистки, команды инкремента и декремента, команды сравнения

19. Арифметические команды это:

- а) Команды пересылки данных, арифметические команды, логические команды, команды переходов
- б) Команды загрузки данных, команды сохранения в памяти, копирование содержимого, запись в устройства ввода-вывода;
- в) Команды сложения по модулю 2, проверка битов и операндов, очистка битов реестра состояния, команды сдвигов
- г) Команды операций с фиксированной запятой, команды операций с плавающей запятой, команды очистки, команды инкремента и декремента, команды сравнения

20. Логические команды это:

- а) Команды пересылки данных, арифметические команды, логические команды, команды переходов
- б) Команды загрузки данных, команды сохранения в памяти, копирование содержимого, запись в устройства ввода-вывода;
- в) Команды сложения по модулю 2, проверка битов и операндов, очистка битов реестра состояния, команды сдвигов, логическое И, логическое ИЛИ
- г) Команды операций с фиксированной запятой, команды операций с плавающей запятой, команды очистки, команды инкремента и декремента, команды сравнения

21. Команды переходов:

- а) Команды пересылки данных, арифметические команды, логические команды, команды переходов
- б) Команды переходов с условиями, команды переходов без условий;
- в) Команды сложения по модулю 2, проверка битов и операндов, очистка битов реестра состояния, команды сдвигов
- г) Команды операций с фиксированной запятой, команды операций с плавающей запятой, команды очистки, команды инкремента и декремента, команды сравнения

22. Язык программирования в машинных кодах:

- а) Низкоуровневый язык программирования с мнемоническим представлением команд
- б) Специальная программа, которая преобразует исходные тексты программы в исполняемый файл
- в) Низкоуровневый язык программирования, команды которого представляют собой набор двоичных чисел
- г) Язык программирования, максимально приближенный к человеческому языку

23. Командный цикл - это:

- а) Действия МП по выполнению одной команды.
- б) Действия МП по выбору из памяти и выполнению одной команды.
- в) Действия МП по выбору из памяти и выполнению одной программы.
- г) Действия МП по чтению или записи одного байта.

24. Машинный цикл - это:

- а) Действия МП по выбору из памяти и выполнению одной команды.
- б) Действия МП по выбору из памяти и выполнению одной программы.
- в) Действия МП по выбору и чтению из памяти одного байта.
- г) Действия МП по выбору и чтению из памяти одного бита.

25. Статическая память - это:

- а) Устройства памяти, статично закрепленные на материнской плате.
- б) Устройства памяти, сохраняющие информацию без применения дополнительных мер.
- в) Устройства памяти, информация в которые записывается только один раз.
- г) Устройства памяти для стирания информации, в которых необходимы дополнительные устройства.

26. Динамическая память:

- а) Устройства памяти, информация в которых может перезаписываться неоднократно, с применением дополнительных устройств.
- б) Устройства памяти, информация в которых не сохраняется без применения дополнительных мер.
- в) Устройства памяти, которые подключены на материнской плате через разъемы и имеется возможность их замены.
- г) Устройства памяти, информация в которых может быть изменена с помощью дополнительных команд.

27. Прерывание - это:

- а) Временное прекращение основного процесса вычислений для выполнения некоторых запланированных действий со стороны пользователя.
- б) Временное прекращение основного режима работы, при котором возможно выключение ПК или перевод ПК в режим ожидания.
- в) Временное прекращение основного процесса вычислений для выполнения некоторых запланированных или незапланированных действий, вызываемых работой аппаратуры или программы.

28. Аппаратные прерывания:

- а) Возникают как реакция микропроцессора на физический сигнал от некоторого устройства.
- б) Возникают как реакция микропроцессора на неисправность аппаратуры.
- в) Возникают как реакция микропроцессора на неисправности источника питания ПК.

29. Программные прерывания:

- а) Вызываются искусственно, с помощью соответствующей команды из программы.
- б) Возникают как реакция микропроцессора на ошибки внутри программы.
- в) Вызываются действиями пользователя во время выполнения программы.

30. Исключения:

- а) Реакция микропроцессора на физические сбои аппаратуры в процессе выполнения программы.
- б) Реакция микропроцессора на нестандартную ситуацию, возникшую внутримикропроцессора во время выполнения некоторой команды программы.
- в) Реакция микропроцессора на неправильные действия пользователя, вмешивающегося в процесс выполнения программы.

31. Прерывания внешние:

- а) Вызываются сигналами, приходящими в ПК по внешним линиям связи.
- б) Вызываются сигналами, приходящими в ПК от периферийных устройств.
- в) Вызываются внешними по отношению к МК событиями.

32. Прерывания внутренние:

- а) Возникают внутри микропроцессора во время вычислительного процесса.
- б) Возникают внутри микропроцессора при неправильно написанной программе.
- в) Возникают внутри микропроцессора при неправильных действиях оператора.

33. Маскируемые прерывания:

- а) Генерируются контроллером прерываний по заявке определенных периферийных устройств.
- б) Относятся к категории программных прерываний.
- в) Относятся к категории синхронных прерываний.

34. Немаскируемые прерывания:

- а) Могут игнорироваться микропроцессором либо их обработка может быть отложена.
- б) Инициируют источники, требующие безотлагательного вмешательства со стороны микропроцессора.
- в) Инициируют источники, путем подачи сигнала на вывод INTR микропроцессора.

35. Синхронные прерывания:

- а) Возникают в случайные моменты времени, во время работы периферийного оборудования.
- б) Возникают синхронно с действиями пользователя.
- в) Возникают в ходе некоторых запланированных действий ОС, при выполнении программы.

36. Программные средства системы прерывания – это:

- а) Программируемый контроллер i8259A, таблица векторов прерываний, два флага IF, TF в регистре флагов.
- б) Контроллер i8259A, два флага IF, TF в регистре флагов, машинные команды микропроцессора.
- в) Таблица векторов прерываний, Два флага IF, TF в регистре флагов, машинные команды микропроцессора.

Раздел 4. Программирование микроконтроллеров AVR

Tema 4.1 Платформа Arduino

Контрольные вопросы

Привести основные характеристики и принципы программирования платформы Arduino.

Указать основные возможности для написания, трансляции и отладки программ программной среды Arduino.

Задания для самостоятельной работы обучающихся

Выполнение индивидуальных заданий по созданию программ микроконтроллера в

3.3 Вопросы к экзамену по дисциплине

Вопросы к экзамену по дисциплине «ОП.08 Микропроцессорные системы»

- 1. Принципы Джона фон Неймана.
- 2. Принципы архитектуры ЭВМ, основанной на принципах фон Неймана.
- 3. Основные различия между архитектурой фон Неймана и другими классическими архитектурами.
- 4. Определение микропроцессора, отличие МП от больших и сверхбольших интегральных микросхем.
- 5. История развития ЭВМ. Поколения ЭВМ.
- 6. Отличительные признаки ЭВМ разных поколений.
- 7. Классификация микропроцессоров.
- 8. Классификация микропроцессоров по назначению.
- 9. Классификация микропроцессоров по виду обрабатываемых сигналов.
- 10. Классификация микропроцессоров по количеству выполняемых программ.
- 11. Классификация микропроцессоров по числу БИС в микропроцессорном комплекте.
- 12. Различия многокристального и многосекционного комплектов.
- 13. Классификация микропроцессоров по структурному признаку. Методы наращивания разрядности М Π .
- 14. Классификация микропроцессоров по виду алгоритма работы управляющего устройства.
- 15. Классификация микропроцессоров по составу набора команд.
- 16. Классификация микропроцессоров по технологии изготовления.
- 17. Внутренняя структура микропроцессора. Состав и назначение основных внутренних устройств микропроцессора.
- 18. Принципы взаимодействия микропроцессора с внутренними устройствами микропроцессорной системы.
- 19. Арифметико-логическое устройство микропроцессора. Назначение, структура, принцип действия.
- 20. Устройство управления микропроцессора. Назначение, структура, принцип действия.
- 21. Регистровое запоминающее устройство микропроцессора. Назначение, структура, принцип действия.
- 22. Состав и назначение основных внутренних регистров МП
- 23. Классическая структура связей в микропроцессорной системе. Недостатки данной структуры.
- 24. Шинная структура связей в микропроцессорной системе. Преимущества данной структуры.
- 25. Системная магистраль микропроцессорной системы. Структура, назначение, принцип действия.
- 26. Структура системной шины микропроцессора. Ее составные части.
- 27. Строение и назначение шины данных.
- 28. Строение и назначение шины адреса.
- 29. Строение и назначение шины управления.
- 30. Структура системной шины с общими шинами команд и данных и с раздельными шинами команд и данных. Области применения.
- 31. Классификация микропроцессоров по поколениям.
- 32. Отличия микропроцессоров в зависимости от поколений.

- 33. Виды языков программирования.
- 34. Особенности программирования в машинных кодах. Достоинства и недостатки.
- 35. Особенности программирования на ассемблере. Достоинства и недостатки.
- 36. Особенности программирования на языках высокого уровня. Достоинства и нелостатки.
- 37. Система команд Ассемблера. Формат команд Ассемблера.
- 38. Арифметические команды Ассемблера. Состав, назначение, примеры.
- 39. Команды пересылки Ассемблера. Состав, назначение, примеры.
- 40. Логические команды Ассемблера. Состав, назначение, примеры.
- 41. Команды переходов Ассемблера. Состав, назначение, примеры.
- 42. Режимы работы микропроцессора. Основные особенности режимов.
- 43. Особенности реального режима работы микропроцессора и области применения.
- 44. Особенности защищенного режима работы микропроцессора и области применения.
- 45. Особенности виртуального режима работы микропроцессора и области применения.
- 46. Командные циклы микропроцессора. Структура командного цикла.
- 47. Способы формирования адресного пространства.
- 48. Организация адресного пространства.
- 49. Принципы адресации команд и данных.
- 50. Принципы дешифрации адресов.
- 51. Виды устройств памяти.
- 52. Оперативно-запоминающие устройства. Виды ОЗУ. Особенности каждого вида ОЗУ.
- 53. Строение и принцип действия запоминающих ячеек динамического ОЗУ.
- 54. Строение и принцип действия запоминающих ячеек статического ОЗУ.
- 55. Постоянные запоминающие устройства. Виды ПЗУ.
- 56. ПЗУ ROM. Виды, строение ячеек памяти, принципы программирования.
- 57. ПЗУ PROM. Виды, строение ячеек памяти, принципы программирования.
- 58. ПЗУ RPROM. Виды, строение ячеек памяти, принципы программирования.
- 59. ПЗУ EEPROM. Виды, строение ячеек памяти, принципы программирования.
- 60. Назначение прерываний.
- 61. Организация прерываний.
- 62. Программные и аппаратные средства прерываний
- 63. Назначение программ-отладчиков.
- 64. Области применения программ-отладчиков.
- 65. Отладка программ в ручном режиме. Особенности и области применения.
- 66. Отладка программ с помощью сервиса отладчиков. Особенности и область применения.
- 67. Отладка программ с помощью программ-интерпретаторов. Особенности и области применения.
- 68. Отладка программ с помощью систем, работающих «в живую». Особенности и области применения.
- 69. Способы программирования микропроцессоров.
- 70. Команды языка Ассемблера. Группы команд и их назначение.
- 71. Программное обеспечение, используемое при программировании микропроцессора.
- 72. Виды данных, используемых при программировании микропроцессоров.
- 73. Тенденции развития микропроцессоров для персональных ЭВМ и вычислительных систем.
- 74. Внутреннее устройство микроконтроллеров.
- 75. Принцип действия микроконтроллеров.
- 76. Области применения микроконтроллеров.
- 77. Тенденции развития микроконтроллеров.

78. Основные серии микроконтроллеров и их отличие между собой.

Лист согласования

Дополнения и изменения к комплекту ФОС на учебный год

	Дополнения и изм	иенения к	комплекту	ФОСна		_ учебный	ГОД	ПО
дисциі	ілине							_
	В комплект ФОС вы	несены следу	ющие измен	нения:				
		 						_
								_
								_
								_
	Дополнения и из	менения в	комплекте	ФОС	обсуждены	на заседан	нии	– ЦК
··	»20_	г. (прот	окол №).				
Предсе	едатель ЦК	/			/			

Департамент образования и науки Приморского края краевое государственное бюджетное профессиональное

образовательное учреждение

«Спасский индустриально-экономический колледж»

УΊ	ВЕРЖ	(ДАЮ
Зам	и. дире	ектора по УР
		Н.В.Заяц
‹ ‹	>>	20 г

Фонд

оценочных средств

по учебной дисциплине

ОП.08 Микропроцессорные системы

по специальностям СПО

11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств

г. Спасск – Дальний 2018 г.