Фонд

оценочных средств

по учебной дисциплине

Электронная техника по специальности СПО

11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств

г. Спасск – Дальний 2018 г.

Фонд оценочных средств по дисциплине ОП.05 Электронная техника разработан на

Федерального государственного образовательного стандарта среднего

профессионального образования по специальностям СПО:

Монтаж, техническое обслуживание и ремонт электронных приборов и

устройств базового уровня подготовки и программы учебной дисциплины Электронная

техника

Разработчики:

Организация-разработчик: краевое государственное бюджетное профессиональное

образовательное учреждение «Спасский индустриально-экономический колледж»

Разработчик: Поминов Павел Владимирович, преподаватель КГБ ПОУ СИЭК

2

СОДЕРЖАНИЕ

1.	Паспорт фонда оценочных средств	. 4
2.	Результаты освоения учебной дисциплины, подлежащие проверке	. 4
<u>3.</u>	Оценка освоения учебной дисциплины	. 5
	3.1 Формы и методы оценивания	. 5
	3.2 Перечень вопросов и заданий для текущего контроля знаний по дисциплине	. 5
	3.3Вопросы кэкзамену по дисциплине	11

1 Паспорт фонда оценочных средств

В результате освоения учебной дисциплины ОП.05 Электронная техника обучающийся должен обладать предусмотренными ФГОС по специальности СПО 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств базового уровня подготовки следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:

Код	Умения	Знания
пк, ок		
ПК 1.1,	- определять и	- сущность физических процессов,
1.2, 2.1,	анализировать основные	протекающих в электронных приборах и
2.2, 3.1, 3.2	параметры электронных	устройствах: электронно-дырочный р-п
	схем;	переход, контакт металл-полупроводник,
ОК 01-03,	- определять	переход Шоттки, эффект Гана, динатронный
07, 09,10	работоспособность	эффект и др.;
	устройств электронной	- устройство, основные параметры, схемы
	техники;	включения электронных приборов и
	- производить подбор	принципы построения электронных схем;
	элементов электронной	- типовые узлы и устройства электронной
	аппаратуры по заданным	техники.
	параметрам;	

Формой аттестации по учебной дисциплине является экзамен

2 Результаты освоения учебной дисциплины, подлежащие проверке

2.1 В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

Таблица 1

Результаты обучения	Критерии оценки	Методы оценки
Знания:		
- сущность физических	- правильные и четкие ответы на	Тестирование
процессов, протекающих	контрольные вопросы и тесты;	
в электронных приборах и	- глубина понимания	Анализ результатов
устройствах: электронно-	особенностей физических	выполнения
дырочный (р-п)переход,	процессов, принципов	самостоятельной работы
контакт металл-	построения и работы, применения	
полупроводник, переход	электронных приборов и	Экзамен
Шотки, эффект Гана,	устройств;	
динатронный эффект и	- глубина понимания устройства,	
др.;	основных параметров, схем	
	включения электронных	
- устройство, основные	приборов и принципов	
параметры, схемы	построения электронных схем;	

включения электронных приборов и принципы построения электронных схем; - типовые узлы и устройства электронной техники	- оптимальность применения типовых узлов и устройств электронной техники	
Умения:		
• определять и	Точность и грамотность	Экспертная оценка
анализировать основные	определения и анализа основных	результатов деятельности
параметры электронных	параметры электронных схем и	студентов при защите
схем;	оценки работоспособности	лабораторных работ,
• определять	устройств электронной техники;	тестирования,
работоспособность	Быстрота и техническая	проверочных работ и др.
устройств электронной	грамотность подбора элементов	видов текущего
техники;	электронной аппаратуры по	контроля,
• производить	заданным параметрам	дифференцированный
подбор элементов	Скорость ориентации в разделах	зачет
электронной аппаратуры	справочной литературе	
по заданным параметрам;		

3 Оценка освоения учебной дисциплины:

3.1 Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине Электронная техника, направленные на формирование общих и профессиональных компетенций.

3.2 Перечень вопросов и заданий для текущего контроля знаний по дисциплине Электронная техника

Раздел 1 Физические основы полупроводниковой техники

Тема 1.1 Электрофизические свойства полупроводников

Контрольные вопросы

Привести энергетические диаграммы полупроводников с разным типом проводимости.

Дать понятие уровня Ферми.

Дать понятие ковалентной связи.

Тема 1.2 Контактные и поверхностные явления в полупроводниках

Контрольные вопросы

Пояснить механизм образования р-п-перехода.

Дать классификацию р-п-переходов.

Раздел 2 Полупроводниковые приборы

Тема 2.1 Полупроводниковые приборы с одним р-п-переходом

Контрольные вопросы

Привести классификацию полупроводниковых приборов с одним р-п-переходом.

Привести основные параметры полупроводниковых диодов.

Привести основные параметры полупроводниковых стабилитронов.

Привести основные параметры полупроводниковых варикапов.

Привести основные параметры туннельных диодов и диодов Шоттки.

Самостоятельная работа обучающихся

Выполнение индивидуального задания по графическому расчету электрических параметров полупроводниковых диодов и стабилитронов

Тема 2.2 Биполярные транзисторы.

Контрольные вопросы

Привести классификацию биполярных транзисторов.

Пояснить принцип действия биполярных транзисторов.

Пояснить схему включения биполярного транзистора с общей базой (ОБ), ее основные свойства и области применения.

Пояснить схему включения биполярного транзистора с общим эмиттером (ОЭ), ее основные свойства и области применения.

Пояснить схему включения биполярного транзистора с общим коллектором (ОК), ее основные свойства и области применения.

Привести входные и выходные статические характеристики биполярных транзисторов.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров биполярных транзисторов.

Тема 2.3 Полевые (униполярные) транзисторы

Контрольные вопросы

Привести классификацию униполярных транзисторов.

Привести схемы включения униполярных транзисторов и основные свойства.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров полевых и МДП-транзисторов.

Тема 2.4 Тиристоры

Контрольные вопросы

Привести классификацию тиристоров

Привести внутреннюю структуру и пояснить принцип действия тиристоров.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров тиристора.

Тема 2.5 Оптоэлектронные приборы

Контрольные вопросы

Привести классификацию оптоэлектронных приборов.

Привести внутреннюю структуру и пояснить принцип действия светоизлучающего диода.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров фоторезистора

Раздел 3 Устройства отображения информации

Тема 3.1 Электронно-лучевые и полупроводниковые устройства отображения информации (УОИ)

Контрольные вопросы

Привести классификацию устройств отображения информации.

Привести классификацию электронно-лучевых трубок.

Пояснить принцип действия цветных LCD экранов.

Раздел 4. Аналоговая схемотехника

Тема 4.1 Электронные усилители. Основные свойства.

Контрольные вопросы

Привести классификацию электронных усилителей.

Указать основные параметры усилителей.

Тема 4.2 Схемотехника усилительных устройств

Контрольные вопросы

Привести электрическую принципиальную схему одиночного каскада электронного усилителя на биполярном транзисторе и указать назначение элементов.

Указать режимы работы усилителей, их основные свойства и области применения.

Привести классификацию видов обратной связи в усилителях.

Пояснить принцип действия усилителей мощности.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров усилителей

Тема 4.3 Усилители постоянного тока (УПТ)

Контрольные вопросы

Привести классификацию УПТ.

Пояснить принцип действия дифференциального усилителя.

Дать определение и указать основные параметры операционного усилителя.

Привести основные схемы включения операционных усилителей.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров схем включения ОУ

Тема 4.4 Специальные виды усилителей

Контрольные вопросы

Привести классификацию специальных видов усилителей.

Указать основные отличия специальных усилителей и их свойства.

Раздел 5 Генераторы электрических сигналов

Тема 5.1 Генераторы синусоидальных сигналов и сигналов специальной формы

Контрольные вопросы

Привести классификацию генераторов электрических сигналов.

Указать условия возникновения электрических колебаний.

Задания для самостоятельной работы обучающихся

Выполнение индивидуального задания по определению электрических параметров схем генераторов электрических сигналов

Раздел 6 Источники питания и преобразователи

Тема 6.1 Основные понятия об источниках питания

Контрольные вопросы

Привести классификацию источников питания.

Привести схемы выпрямителей и пояснить принцип их действия.

Тема 6.2 Стабилизаторы напряжения и тока

Контрольные вопросы

Привести классификацию стабилизаторов.

Указать основные характеристики стабилизаторов напряжения.

Тема 6.3 Источники питания с преобразованием частоты

Контрольные вопросы

Привести структурную схему импульсного источника питания и пояснить принцип его действия.

Пояснить принцип формирования сигнала ШИМ для управления импульсным источником питания.

Контрольная работа

Выберите правильный вариант ответа:

- 1. Диэлектрикам соответствует ширина запрещенной зоны величиной:
 - a) 0.03-3 3B;
 - б) Свыше ЗэВ;
 - в) Менее 0,03 эВ;

2. В схеме с ОК коэффициент усиления по напряжению имеет значения: а) До 1; б) От 1 до 10; в) Десятки-сотни единиц. 			
3. Изобразите схему включения биполярного транзистора с ОЭ.			
4. Изобразите УГО полевого транзистора с каналом n -типа.			
5. Изобразите УГО тиристора с управлением по катоду.			
6. Изобразите УГО светодиода.			
7. Расшифровать обозначение: КП105A			
8. При р-проводимости основными носителями заряда являются:а) Электроны;б) Протоны;в) Дырки.			
9. Для n-проводимости полупроводник легируют примесью: а) Акцепторной;б) Донорной;в) Нет вариантов.			
 10. При увеличении частоты тока свойства биполярного транзистора: а) Улучшаются; б) Ухудшаются; в) Не меняются. 11. Какой из усилителей имеет наибольший коэффициент усиления по напряжению? а) ОБ, ОК; 			
б) ОЭ, ОК; в) ОЭ, ОБ.			
12. Какой из усилителей имеет наибольший коэффициент усиления по току? а) ОЭ, ОК; б) ОБ, ОК; в) ОБ, ОЭ.			
13. Усилитель какого класса имеет наименьшие нелинейные искажения? а) Класса А; б) Класса В; в) Класса С. 			

- 14. Каким образом в усилительном каскаде задается положение рабочей точки?
 - а) Резистором в цепи коллектора;
 - б) Резисторами в цепи базы;
 - в) Резистором в цепи эмиттера.

- 15. Какой усилитель называют эмиттерным повторителем?
 - a) ОЭ;
 - б) ОК;
 - в) ОБ.
- 16. ОС по напряжению исчезает при:
 - а) При закорачивании цепи нагрузки;
 - б) При разрыве цепи нагрузки;
 - в) При разрыве цепи сигнала.
- 17. При увеличении емкости входного конденсатора нижняя граничная частота усилителя:
 - а) Не изменяется;
 - б) Увеличивается;
 - в) Уменьшается.
- 18. ОУ усиливает:
 - а) Синфазную составляющую сигнала;
 - б) Обе составляющие сигнала;
 - в) Дифференциальную составляющую сигнала;
- 19. Резистор в цепи эмиттера транзисторного усилителя служит для:
 - а) Температурной стабилизации усилителя;
 - б) Улучшения частотных свойств усилителя;
 - в) Установления положения рабочей точки усилителя.

20. ОУ имеют:

- а) Очень большой коэффициент усиления, очень большое выходное сопротивление, полосу пропускания от 0 до десятков МГц;
- б) Очень большой коэффициент усиления, очень большое входное сопротивление, полосу пропускания от 0 до десятков МГЦ;
- в) Очень большой коэффициент усиления, очень маленькое выходное сопротивление, полосу пропускания от десятков кГц от сотен МГц.

3.3 Вопросы к экзамену по дисциплине

Вопросы к экзамену по дисциплине «Электронная техника»

- 1. Планетарная модель строения атома. Основные положения.
- 2. Основы зонной теории строения твердого тела. Энергетические уровни электронов в атоме твердого тела.
- 3. Распределение энергетических уровней в проводниках, диэлектриках и полупроводника. Различия между ними с точки зрения зонной теории.
- 4. Кристаллическая решетка химически чистого полупроводника в идеальном состоянии.
- 5. Особенности и физические свойства полупроводниковых материалов.
- 6. Проводимость чистых полупроводников. Генерация и рекомбинация носителей заряда.
- 7. Зависимость собственной проводимости полупроводника от температуры.
- 8. Примесные полупроводники. Принцип получения. Разновидности.
- 9. Полупроводники п-типа. Принцип получения. Особенности.
- 10. Полупроводники р-типа. Принцип получения. Особенности.
- 11. Сравнительная характеристика чистых и примесных полупроводников.

- 12. Зависимость проводимости примесных полупроводников от температуры.
- 13. Дрейфовый и диффузионный токи в полупроводнике.
- 14. Контакт между полупроводниками разных типов. Получение электронно-дырочного перехода.
- 15. Формирование потенциального барьера в р-п-переходе.
- 16. p-n-переход под действием внешнего электромагнитного поля. Прямое включение. Напряжение отпирания.
- 17. р-п-переход под действием внешнего электромагнитного поля. Обратное включение.
- 18. Вольтамперная характеристика р-п-перехода.
- 19. Зависимость вольтамперной характеристики р-п-перехода от температуры.
- 20. Полупроводниковые диоды. Определение. Классификация.
- 21. Выпрямительный диод. Конструкция. УГО. ВАХ. Принцип работы. Основные свойства и параметры.
- 22. Последовательное и параллельное включение выпрямительных диодов.

Однополупериодный и двухполупериодный выпрямитель.

- 23. Высокочастотные диоды. Конструкция. ВАХ. Основные параметры. Назначение.
- 24. Кремниевые стабилитроны. УГО. ВАХ. Принцип работы. Основные параметры.
- 25. Схема простейшего стабилизатора напряжения на стабилитроне. Принцип работы.
- 26. Транзисторы. Устройство и конструкция. Область применения.
- 27. Принцип действия биполярного транзистора.
- 28. Режимы работы транзистора (активный режим, режим насыщения, отсечки и инверсный режим).
- 29. Схема включения транзистора с общей базой. Особенности. Основные характеристики.
- 30. Входная и выходная статическая характеристика при включении транзистора по схеме с общей базой.
- 31. Схема включения транзистора с общим эмиттером. Особенности. Основные характеристики.
- 32. Входная и выходная статическая характеристика при включении транзистора по схеме с общим эмиттером.
- 33. Схема включения транзистора с общим коллектором. Особенности. Основные характеристики.
- 34. Транзистор, включенный по схеме с общей базой в динамическом режиме. Особенности работы. Динамические характеристики.
- 35. Транзистор, включенный по схеме с общим эмиттером в динамическом режиме. Особенности работы. Динамические характеристики.
- 36. Простейшая схема усилителя мощности с резистивной нагрузкой. Принцип работы.
- 37. Биполярный транзистор в ключевом режиме. Особенности режима. Быстродействие.
- 38. Биполярный транзистор, как активный четырехполюсник. h-параметры транзистора.
- 39. Связь h-параметров транзистора со статическими характеристиками транзистора.
- 40. Полевой транзистор. Конструктивные особенности, принцип работы, основные характеристики, УГО.
- 41. Полевой транзистор с изолированным затвором, принцип работы, выходные и стокзатворные характеристики, УГО.
- 42. Полевой транзистор с p-n-переходом, принцип работы, выходные и сток-затворные характеристики.
- 43. МДП-транзисторы с индуцированным каналом. Конструкция, УГО, принцип действия.
- 44. МДП-транзисторы со встроенным каналом. Конструкция, УГО, принцип действия.
- 45. Сравнительные характеристики биполярных и полевых транзисторов. Основные области применения.

- 46. Конструкция и принцип работы тиристора. ВАХ, УГО.
- 47. Способы управления тиристорами. Преимущества тиристоров в выпрямительных устройствах.
- 48. Область применения тиристоров. Примеры схем.
- 49. Элементы электронной техники, основанные на принципе фотоэффекта. Физические принципы работы.
- 50. Фоторезисторы, фотодиоды, фототиристоры. Устройство и принцип работы. УГО. Области применения.
- 51. Элементы электронной техники, основанные на принципе светоэффекта. Физические принципы работы.
- 52. Светодиоды, светотранзисторы. Устройство и принцип работы. УГО. Области применения.
- 53. Светодиодные матрицы. Устройство и принцип работы. Области применения.
- 54. Электронно-лучевые трубки. Классификация, области применения. Устройство электронно-лучевых пушек.
- 55. Классификация интегральных микросхем.
- 56. Различия ИМС на биполярных и полевых транзисторах. Основные характеристики и области применения.
- 57. Технологии изготовления ИМС. Обозначения, различия, области применения ИМС в зависимости от технологии изготовления.
- 58. Большие интегральные схемы (БИС). Основные пути развития, микроэлектроники.
- 59. Генераторы синусоидальных сигналов. Определение, назначение, принцип работы. Условия самовозбуждения генераторов.
- 60. Автогенераторы синусоидальных сигналов и генераторы с принудительным возбуждением.
- 61. Автогенераторы типа LC и RC. Способы построения и принципы работы.
- 62. LC генераторы по схеме с индуктивной трехточкой. Схема, принцип работы.
- 63. LC генераторы по схеме с емкостной трехточкой. Схема, принцип работы.
- 64. RC генераторы с фазосдвигающими RC цепочками. Схемы, принцип работы.
- 65. Автогенераторы на ОУ. Методы стабилизации частоты генераторов.
- 66. Понятие о релаксационном генераторе. Определение, назначение, параметры.
- 67. Компаратор. Определение. Схема компаратора на ОУ. Назначение, применение компараторов.
- 68. Аналоговые сигналы. Основные характеристики аналогового сигнала. Понятие о спектре сигнала. Динамический диапазон сигнала. Виды модуляции аналоговых сигналов
- 69. Цифровые сигналы. Основные характеристики цифровых сигналов. Виды импульсной модуляции.
- 70. Усилители. Назначение усилителей. Основные параметры усилителей. Классификация.
- 71. Принципиальная схема усилителя на биполярном транзисторе. Назначение элементов схемы.
- 72. Искажения в усилителях. АЧХ усилителей. Связь АЧХ усилителя с параметрами схемы.
- 73. Обратная связь в усилителях. Виды обратной связи. Влияние ОС на параметры усилителя.
- 74. Режимы работы усилителей. Области применения усилителей в соответствии с режимами работы.
- 75. Усилители постоянного тока. Дифференциальный каскад УПТ. Принцип работы.
- 76. Операционные усилители. Структурная схема, УГО, схемы усилителей с использованием ОУ (инвертирующий, неинвертирующий, дифференциальный).

Л	ист согласования

77. Операционные усилители в качестве устройств для выполнения математических операций с сигналами. Интегрирующий ОУ. Дифференцирующий ОУ.

Дополнения и изменения к комплекту ФОС на учебный год

	Дополнения и	изменения к	комплекту	ФОСна	l	_ учебный	год	ПО
дисциі	ілине							_
	В комплект ФО	С внесены след	дующие изме	нения:				
								_
								_
								_
								_
	Дополнения и	изменения в	в комплекте	ФОС	обсуждены	на заседа	нии	- ЦК
<u> </u>	»	_20г. (пре	отокол №).				
Предсе	едатель ЦК		/		/			

Департамент образования и науки Приморского края краевое государственное бюджетное профессиональное

образовательное учреждение

«Спасский индустриально-экономический колледж»

УΊ	ВЕРЖ	ДАЮ
3aı	м. дире	ектора по УР
		Н.В.Заяц
«	>>	20 г

Фонд

оценочных средств

по учебной дисциплине

ОП.05 Электронная техника

по специальностям СПО

11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств

г. Спасск – Дальний 2018 г.